Sunday, April 2, 2017

The importance of useless knowledge

By setting up his academic paradise, Flexner enabled the nuclear and digital revolutions.
However, the unforeseen usefulness came much faster than expected. By setting up his academic paradise, Flexner enabled the nuclear and digital revolutions. Among his first appointments was Einstein, who would follow his speech at the World’s Fair with his famous letter to President Roosevelt in August 1939.

Supporting applied and not-yet-applied research is not just smart but a social imperative. In order to enable and encourage the full cycle of scientific innovation, which feeds into society in numerous important ways, it is more productive to think of developing a solid portfolio of research in much the same way as we approach well-managed financial resources. Such a balanced portfolio would contain predictable and stable short-term investments, as well as long-term bets that are intrinsically more risky but can potentially earn off-the-scale rewards. A healthy and balanced ecosystem would support the full spectrum of scholarship, nourishing a complex web of interdependencies and feedback loops.
However, our current research climate, governed by imperfect "metrics" and policies, obstructs this prudent approach. Driven by an ever-deepening dearth of funding, against a background of economic uncertainty, global political turmoil, and ever-shortening time cycles, research criteria are becoming dangerously skewed toward conservative short-term goals that may address more immediate problems but miss out on the huge advances that human imagination can bring in the long term. Just as in Flexner’s time, the progress of our modern age, and of the world of tomorrow, depends not only on technical expertise, but also on unobstructed curiosity and the benefits — and pleasures — of traveling far upstream, against the current of practical considerations.
Flexner first rose to public attention in 1908 with his book The American College: A Criticism, with a strong appeal for hands-on teaching in small classes. His main claim to fame was his 1910 bombshell report, commissioned by the Carnegie Foundation, on the state of 155 medical schools in North America, branding many of them as frauds and irresponsible profit machines that withheld from students any practical training.
When Flexner died in 1959 at age 92, his obituary appeared on the front page of The New York Times along with an editorial concluding, "No other American of his time has contributed more to the welfare of this country and of humanity in general."
the early 20th century the study of the atom and the development of quantum mechanics were seen as a theoretical playground for a handful of often remarkably young physicists. The birth of quantum theory was long and painful. The German physicist Max Planck described his revolutionary thesis, first proposed in 1900, that energy could only occur in packets or "quanta" as "an act of desperation." In his words, "I was willing to make any offer to the principles in physics that I then held." His gambit played out very well. Without quantum theory, we wouldn’t understand the nature of any material, including its color, texture, and chemical and nuclear properties. These days, in a world totally dependent on microprocessors, lasers, and nanotechnology, it has been estimated that 30 percent of the U.S. gross national product is based on inventions made possible by quantum mechanics.
The path from exploratory blue-sky research to practical applications is not one-directional and linear, but rather complex and cyclic, with resultant technologies enabling even more fundamental discoveries. Take, for example, superconductivity, the phenomenon discovered by the Dutch physicist Heike Kamerlingh Onnes in 1911. Certain materials, when cooled down to ultralow temperatures, turn out to conduct electricity without any resistance, allowing large electric currents to flow at no energy costs. The powerful magnets that can be so constructed have led to many innovative applications, from the maglev transport technology that allows trains to travel at very high speeds as they levitate through magnetic fields to the fMRI technology used to make detailed brain scans for diagnosis and treatment.
It is in the life sciences that we find perhaps the most powerful practical implications of fundamental discoveries. One of the least-known success stories in human history is how over the past two-and-a-half centuries advances in medicine and hygiene have tripled life expectancy in the West. The discovery of the double helical structure of DNA in 1953 jump-started the age of molecular biology, unraveling the genetic code and the complexity of life. The advent of recombinant DNA technology in the 1970s and the completion of the Human Genome Project in 2003 revolutionized pharmaceutical research and created the modern biotech industry.
Curiosity-driven research attracts the world’s best minds. Young scientists and scholars, drawn to the intellectual challenges of fundamental questions, are trained in completely new ways of thinking and using technology. Once these skills carry over to society, they can have transformative effects.

Much of the knowledge developed through basic research is made publicly accessible and so benefits society as a whole, spreading widely beyond the narrow circle of individuals who, over years and decades, introduce and develop the ideas. Fundamental advances in knowledge cannot be owned or restricted by people, institutions, or nations, certainly not in the internet age. They are truly public goods.
Success rates in grant applications for basic research are plummeting across all disciplines, particularly for early-career researchers. Life scientists can now expect their first National Institutes of Health grants only in their mid-40s. Apart from discouraging the next generation of talented scholars, this lack of opportunities has led to a much more outcome-driven approach to funding, with granting institutions less willing to place risky long bets.
A broad-ranging dialogue between science and society is not only necessary for laying the foundation for future financial support. It is crucial for attracting young minds to join the research effort. Well-informed, science-literate citizens are better able to make responsible choices when confronted with difficult problems like climate change, nuclear power, vaccinations, and genetically modified foods. Similarly, scientists need the dialogue with society to act responsibly in developing potentially harmful technologies. And there is an even higher goal for the public engagement of science: Society fundamentally benefits from embracing the scientific culture of accuracy, truth seeking, critical questioning, healthy skepticism, respect for facts and uncertainties, and wonder at the richness of nature and the human spirit.